37 research outputs found

    Optimizing texture feature extraction in image analysis by using experimental design theory

    Get PDF

    Fabric defect detection using the wavelet transform in an ARM processor

    Get PDF
    Small devices used in our day life are constructed with powerful architectures that can be used for industrial applications when requiring portability and communication facilities. We present in this paper an example of the use of an embedded system, the Zeus epic 520 single board computer, for defect detection in textiles using image processing. We implement the Haar wavelet transform using the embedded visual C++ 4.0 compiler for Windows CE 5. The algorithm was tested for defect detection using images of fabrics with five types of defects. An average of 95% in terms of correct defect detection was obtained, achieving a similar performance than using processors with float point arithmetic calculations

    Analysing wear in carpets by detecting varying local binary patterns

    Get PDF
    Currently, carpet companies assess the quality of their products based on their appearance retention capabilities. For this, carpet samples with different degrees of wear after a traffic exposure simulation process are rated with wear labels by human experts. Experts compare changes in appearance in the worn samples to samples with original appearance. This process is subjective and humans can make mistakes up to 10% in rating. In search of an objective assessment, research using texture analysis has been conducted to automate the process. Particularly, Local Binary Pattern (LBP) technique combined with a Symmetric adaptation of the Kullback-Leibler divergence (SKL) are successful for extracting texture features related to the wear labels either from intensity and range images. We present in this paper a novel extension of the LBP techniques that improves the representation of the distinct wear labels. The technique consists in detecting those patters that monotonically change with the wear labels while grouping the others. Computing the SKL from these patters considerably increases the discrimination between the consecutive groups even for carpet types where other LBP variations fail. We present results for carpet types representing 72% of the existing references for the EN1471:1996 European standard

    Feature extraction of the wear label of carpets by using a novel 3D scanner

    Get PDF
    In the textile industry, the quality of carpets is still determined through visual assessment by human experts. Human assessment is somewhat subjective, so there is a need for a more objective assessment which yields to automated systems. However, existing computer models are at this moment not yet capable of matching the human expertise. Most attempts at automated assessment have focused on image analysis of two dimensional images of worn carpet. These do not adequately capture the three dimensional structure of the carpet that is also evaluated by the experts and the image processing is very dependent on the lighting conditions. One previous attempt however used a laser scanner to obtain three dimensional images of the carpet and process them for carpet assessment. This paper describes the development of a new scanner to acquire wear label characteristics in three dimensions based on a structured light pattern. Now an appropriate technique based on the local binary patterns (LBP) and the Kullback-Leibler divergence has been developed. We show that the new laser scanning system is less dependent on the lighting conditions and color of the carpet and obtains data points on a structured grid instead of sparse points. The new system is also more than five times cheaper, scans more than seven times faster and is specifically designed for scanning carpets instead of 3D objects. Previous attempts to classify the carpet wear were based on several extracted features. Only one of them - the height difference between worn and unworn part - showed a good correlation of 0.70 with the carpet wear label. However, experiments demonstrate that our approach - using the LBP technique - gives rise to promising results, with correlation factors from 0.89 to 0.99 between the Kullback-Leibler divergence and quality labels. This new laser scanner system is a significant step forward in the automated assessment of carpet wear using 3D images

    Video surveillance for monitoring driver's fatigue and distraction

    Get PDF
    Fatigue and distraction effects in drivers represent a great risk for road safety. For both types of driver behavior problems, image analysis of eyes, mouth and head movements gives valuable information. We present in this paper a system for monitoring fatigue and distraction in drivers by evaluating their performance using image processing. We extract visual features related to nod, yawn, eye closure and opening, and mouth movements to detect fatigue as well as to identify diversion of attention from the road. We achieve an average of 98.3% and 98.8% in terms of sensitivity and specificity for detection of driver's fatigue, and 97.3% and 99.2% for detection of driver's distraction when evaluating four video sequences with different drivers

    Texture wear analysis in textile floor coverings by using depth information

    Get PDF
    Considerable industrial and academic interest is addressed to automate the quality inspection of textile floor coverings, mostly using intensity images. Recently, the use of depth information has been explored to better capture the 3D structure of the surface. In this paper, we present a comparison of features extracted from three texture analysis techniques. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show that the use of Local Binary Patterns techniques result in a better ranking of the wear labels as well as in a higher amount of discrimination between features related to consecutive degrees of wear

    Quantifying image distortion based on Gabor filter bank and multiple regression analysis

    Get PDF
    Image quality assessment is indispensable for image-based applications. The approaches towards image quality assessment fall into two main categories: subjective and objective methods. Subjective assessment has been widely used. However, careful subjective assessments are experimentally difficult and lengthy, and the results obtained may vary depending on the test conditions. On the other hand, objective image quality assessment would not only alleviate the difficulties described above but would also help to expand the application field. Therefore, several works have been developed for quantifying the distortion presented on a image achieving goodness of fit between subjective and objective scores up to 92%. Nevertheless, current methodologies are designed assuming that the nature of the distortion is known. Generally, this is a limiting assumption for practical applications, since in a majority of cases the distortions in the image are unknown. Therefore, we believe that the current methods of image quality assessment should be adapted in order to identify and quantify the distortion of images at the same time. That combination can improve processes such as enhancement, restoration, compression, transmission, among others. We present an approach based on the power of the experimental design and the joint localization of the Gabor filters for studying the influence of the spatial/frequencies on image quality assessment. Therefore, we achieve a correct identification and quantification of the distortion affecting images. This method provides accurate scores and differentiability between distortions

    Optimizing feature extraction in image analysis using experimented designs, a case study evaluating texture algorithms for describing appearance retention in carpets

    Get PDF
    When performing image analysis, one of the most critical steps is the selection of appropriate techniques. A huge amount of features can be extracted from several techniques and the selection is commonly performed based on expert knowledge. In this paper we present the theory of experimental designs as a tool for an objective selection of techniques in image analysis domain. We present a study case for evaluating appearance retention in textile floor coverings using texture features. The use of experimental design theory permitted to select an optimal set of techniques for describing the texture changes due to degradation

    Measuring hairiness in carpets by using surface metrology

    Get PDF
    Recently, an automatic system for grading appearance retention in carpets using our own scanner and image analysis techniques was proposed. A system for carpets with low pile construction and without color patterns has been developed. Appearance changes in carpets with high pile construction were still not well detected. We present an approach based on surface metrology that extract information given by the hairs on the carpet surface. These features are complementary to the texture features previously explored. By combining both features, we expand the use of the automatic grading system including some carpets types with high pile construction
    corecore